Energía potencial eléctrica y diferencia de potencial


Para aplicar la conservación de la energía necesitamos definir la energía potencial eléctrica, como lo hicimos para otros tipos de energía potencial. Como vimos en el capítulo 8, la energía potencial puede definirse sólo para fuerzas conservativas. El trabajo que efectúa una fuerza conservativa sobre un objeto en movimiento, entre dos posiciones cualesquiera, es independiente de la trayectoria que siga el objeto. La fuerza electrostática entre dos cargas (ecuación 21-1, F 5 Q1Q2yr2) es conservativa, ya que la dependencia en la posición es justo como la dependencia en la posición en el caso de la fuerza gravitacional, 1yr2, la cual, como vimos en la sección 8-7, es una fuerza conservativa. Así que podemos definir también la energía potencial U para la fuerza electrostática.

Cambio en la energía potencial eléctrica

De esta manera, definimos el cambio en la energía potencial eléctrica, U 2 U , ba cuando una carga puntual q se mueve de un punto a a otro punto b, como el negativo del trabajo que efectúa la fuerza eléctrica para mover la carga desde a hasta b. Por ejemplo, considere el campo eléctrico producido entre dos placas paralelas con cargas iguales y opuestas; suponemos que su separación es pequeña en comparación con su largo y su ancho, así que el campo E debe ser uniforme sobre la mayor parte de la región entre las placas (figura 23-1). Ahora considere una pequeña carga puntual positiva q localizada en el punto a muy cerca de la placa positiva, como se muestra en la figura. Esta carga q es tan pequeña que no afecta a E. Si esta carga q en el punto a se deja en libertad, la fuerza eléctrica realizará trabajo sobre la carga y la acelerará hacia la placa negativa. El trabajo W que efectúa el campo eléctrico E para mover la carga una distancia d es W = Fd = qEd donde usamos la ecuación 21-5, F 5 qE. El cambio en energía potencial eléctrica es igual al negativo del trabajo realizado por la fuerza eléctrica.

Potencial eléctrico y diferencia de potencial

En el capítulo 21 encontramos útil definir el campo eléctrico como la fuerza por unidad de carga. De manera similar, es útil definir el potencial eléctrico (o simplemente el potencial, cuando se entiende que es “eléctrico”), como la energía potencial eléctrica por unidad de carga. Usamos el símbolo V para representar el potencial eléctrico. Si una carga de prueba positiva q tiene una energía potencial eléctrica Ua en algún punto a (con respecto a algún nivel cero de energía potencial previamente establecido), el potencial eléctrico Va en este punto es Ua Va = . Como vimos en el capítulo 8, sólo los cambios en la energía potencial tienen significado físico. Así que sólo la diferencia de potencial o la diferencia en el potencial, entre dos puntos a y b, es susceptible de ser medida (como los puntos a y b de la figura 23-1).

Dejar un Comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *