Maquinas rotativas de corriente continua excitación shunt


Los generadores eléctricos

Un generador es una máquina eléctrica rotativa que transforma energía mecánica en energía eléctrica. Lo consigue gracias a la interacción de los dos elementos principales que lo componen: la parte móvil llamada rotor, y la parte estática que se denomina estátor.

Cuando un generador eléctrico está en funcionamiento, una de las dos partes genera un flujo magnético (actúa como  inductor)
Para que el otro lo transforme en electricidad (actúa como inducido)
.

Los generadores eléctricos se diferencian según el tipo de corriente que producen. Así, nos encontramos con dos grandes grupos de máquinas eléctricas rotativas: los alternadores y las dinamos.

Los alternadores generan electricidad en corriente alterna. El elemento inductor es el rotor y el inducido el estátor. Un ejemplo son los generadores de las centrales eléctricas, las cuales transforman la energía mecánica en eléctrica alterna.

Las dinamos generan electricidad en corriente continua. El elemento inductor es el estátor y el inducido el rotor. Un ejemplo lo encontraríamos en la luz que tiene una bicicleta, la cual funciona a través del pedaleo.

Máquinas eléctricas rotativas: los generadores

Llamamos máquinas eléctricas a los dispositivos capaces de transformar energía eléctrica en cualquier otra forma de energía. Las máquinas eléctricas se pueden dividir en:

  • Máquinas eléctricas rotativas, que están compuestas de partes giratorias, como las dinamos, alternadores y motores.

  • Máquinas eléctricas estáticas, que no disponen de partes móviles, como los transformadores.

Vamos a fijarnos en el grupo de las máquinas rotativas, que lo constituyen los motores y los generadores. Las máquinas eléctricas rotativas son reversibles, yq que pueden trabajar de dos maneras diferentes:

  • Como motor eléctrico


    : Convierte la energía eléctrica en mecánica.

  • Comogenerador eléctrico

    : Convierte la energía mecánica en eléctrica.

Todas las máquinas rotativas están formada por una parte fija llamada estátor, tiene forma cilíndrica, y otra móvil llamada rotor.   El rotor se monta en un eje que descansa en dos rodamientos o cojinetes. El espacio de aire que separa el estátor del rotor, necesario para que pueda girar la máquina se denomina entrehierro
.

Normalmente tanto en el estátor como en el rotor existen devanados hechos con conductores de cobre por los que circulan corrientes suministradas o cedidas a un circuito exterior que constituye el sistema eléctrico
. Uno de los devanados crea un flujo en el entrehierro y se denomina inductor
. El otro devanado recibe el flujo del primero y se denomina inducido
. De igual manera, se podría situar el inductor en el estátor y el inducido en el rotor o viceversa.

Pérdidas y eficiencia de las máquinas eléctricas rotativas

Como cualquier máquina, la potencia de salida que ofrecen las máquinas eléctricas rotativas es menor que la potencia de alimentación que se les suministra, potencia suministrada. La diferencia entre la potencia de salida y la suministrada son las pérdidas:


La potencia de salida de un generador eléctrico es la potencia eléctrica que entrega, la potencia útil. La potencia suministrada o  total es la potencia mecánica de entrada: la potencia mecánica que absorbe la máquina para poder generar electricidad.  

 Dentro de una máquina eléctrica rotativa, las pérdidas más significativas son:

  • Pérdidas mecánicas


    : Causadas por el rozamiento entre las piezas móviles y por la ventilación o refrigeración interior de los devanados.

  • Pérdidas eléctricas o pérdidas en el cobre

    : Se producen en el circuito eléctrico y en sus conexiones y son debidas al efecto Joule
    .

  • Pérdidas magnéticas o pérdidas en el hierro

    : Dependen de las variaciones que se producen en los campos magnéticos y de la frecuencia.

Así mismo, el cociente entre la potencia de salida (también llamada potencia útil) y la potencia suministrada (también llamada potencia total o absorbida) es la eficiencia. Esta eficiencia se expresa en tanto porciento(%):


Por lo tanto, la eficiencia de una máquina eléctrica determina la cantidad de trabajo útil que puede producir, a partir de la energía total que consume.

Principio de funcionamiento de un generador eléctrico: Ley de Faraday

El principio de funcionamiento de los generadores se basa en el fenómeno de inducción electromagnética
.

 La Ley de Faraday
. Esta ley nos dice que el voltaje inducido en un circuito es directamente proporcional al cambio del flujo magnético en un conductor o espira
. Esto quiere decir que si tenemos un campo magnético generando un flujo magnético, necesitamos una espira por donde circule una corriente para conseguir que se genera la f.E.M. (fuerza electromotriz)
.

Electromagnetismo cuando dentro de un campo magnético tenemos una espira por donde circula una corriente eléctrica aparecen un par de fuerzas que provocan que la espira gire alrededor de su eje. De esta misma manera, si dentro de un campo magnético introducimos una espira y la hacemos girar provocaremos la corriente inducida. Esta corriente inducida es la responsable de la f.E.M. Y será variable en función de la posición de la espira y el campo magnético.  

La cantidad de corriente inducida o f.E.M. Dependerá de la cantidad de flujo magnético (también llamado líneas) que la espira pueda cortar, cuanto mayor sea el número, mayor variación de flujo generara y por lo tanto mayor fuerza electromotriz.
.

Se observa los dos casos más extremos, cuando la espira está situada a 0º o 180º y no corta líneas, y cuando está a 90º y 270º y las corta todas

Al hacer girar la espira dentro del imán conseguiremos una tensión que variará en función del tiempo. Esta tensión tendrá una forma alterna, puesto que de 180º a 360º los polos estarán invertidos y el valor de la tensión será negativo.

El principio de funcionamiento del alternador y de la dinamo se basa en que el alternador mantiene la corriente alterna mientras la dinamo convierte la corriente alterna en corriente continua
.

El alternador mantiene la corriente alterna mientras la dinamo convierte la corriente alterna en corriente continua como vemos justo debajo.Señales de salida de un alternador, en corriente alterna, y de una dinamo en corriente continuo

Generador de corriente alterna: el alternador

Los generadores de corriente alterna o alternadores son máquinas que transforman energía mecánica, que reciben por el rotor, en energía eléctrica en forma de corriente alterna. La mayoría de alternadores son máquinas de corriente alterna síncrona, que son las que giran  a la velocidad de sincronismo, que está relacionada con el nombre de polos que tiene la máquina y la frecuencia de la fuerza electromotriz
. Esta relación hace que el motor gire a la misma velocidad que le impone el estátor a través del campo magnético. Esta relación viene dada por la expresión:


Donde f es la frecuencia a la cual está conectada la máquina y P es el número de pares de polos
.

 Su estructura es la siguiente:

  • Estátor


    : Parte fija exterior de la máquina. El estátor está formado por una carcasa metálica que sirve de soporte. En su interior encontramos el núcleo del inducido, con forma de corona y ranuras longitudinales, donde se alojan los conductores del enrollamiento inducido.

  • Rotor

    : Parte móvil que gira dentro del estátor El rotor contiene el sistema inductor y los anillos de rozamiento, mediante los cuales se alimenta el sistema inductor. En función de la velocidad de la máquina hay dos formas constructivas.
    1. Rotor de polos salidos o rueda polar


      : Utilizado para turbinas hidráulicas o motores térmicos, para sistemas de baja velocidad.

    2. Rotor de polos lisos

      : Utilizado para turbinas de vapor y gas, estos grupos son llamados turboalternadores. Pueden girar a 3000, 1500 o 1000 r.P.M. En función de los polos que tenga.

El alternador es una máquina eléctrica rotativa síncrona que necesita de una corriente de excitación en las bobinas del inductor para generar el campo eléctrico y funcionar.

Al ser máquinas síncronas que se conectan a la red han de trabajar a una frecuencia determinada. En el caso de Europa y algunas zonas de Latinoamérica se trabaja a 50 Hz, mientras que en los Estados Unidos usan 60 Hz. En aplicaciones especiales como en el caso de la aeronáÚtica, se utilizan frecuencias más elevadas, del orden de los 400 Hz.

El principio de funcionamiento de los alternadores es el mismo que hemos estudiado hasta ahora, con una pequeña diferencia. Para generar el campo magnético, hay que aportar una corriente de excitación(Ie)
 en corriente continua. Esta corriente genera el campo magnético para conseguir la corriente inducida(Ii)
 que será corriente alterna.

Los alternadores están acoplados a una máquina motriz que les genera la energía mecánica en forma de rotación. Según la máquina motriz tenemos tres tipos:

  • Máquinas de vapor


    : Se acopla directamente al alternador. Generan una velocidad de giro baja y necesitan un volante de inercia para generar una rotación uniforme.

  • Motores de combustión interna

    : Se acoplan directamente y las carácterísticas son similares al caso anterior.

  • Turbinas hidráulicas

    : La velocidad de funcionamiento tiene un rango muy amplio. Estos alternadores están diseñados para funcionar bien hasta el doble de su velocidad de régimen.

Excitatriz de los alternadores

Los alternadores necesitan una fuente de corriente continua para alimentar los electroimanes (devanados)


 que forman el sistema inductor. Por eso, en el interior del rotor se incorpora la excitatriz.

La excitatriz es la máquina encargada de suministrar la corriente de excitación a las bobinas del estátor, parte donde se genera el campo magnético. Según la forma de producir el flujo magnético inductor podemos hablar de:

  • Excitación independiente


     La corriente eléctrica proviene de una fuente exterior.

  • Excitación serie

     La corriente de excitación se obtiene conectando las bobinas inductoras en serie con el inducido. Toda la corriente inducida a las bobinas del rotor pasa por las bobinas del estátor.

  • Excitación Shunt o derivación

     La corriente de excitación se obtiene conectando las bobinas del estátor en paralelo con el inducido. Solo pasa por las bobinas del estátor una parte de la corriente inducida.

  • Excitación compound

     En este caso las bobinas del estátor están conectadas tanto en serie como en paralelo con el inducido. 

Efectos del funcionamiento de un alternador

Cuando un alternador funciona conectado a un circuito exterior se crean corrientes inducidas que nos generan los siguientes efectos:

  • Caída de tensión en los bobinas  de los inducidos


    : La resistividad que nos presentan los conductores hace que tengamos una caída de tensión.

  • Efecto de reacción en el inducido

    : El tipo de reacción que tendremos en el inducido dependerá de la carga conectada:
    1. Resistiva


      : Tenemos un incremento en la caída de tensión interna y una disminución de la tensión en los bornes de salida.

    2. Inductiva

      : Aparece una caída de tensión importante en los bornes de salida.

    3. Capacitiva

      : Disminuye la caída de tensión interna y eleva mas el valor de la tensión de salida en los bornes de salida.
  • Efecto de dispersión del flujo magnético


    : Hay líneas de fuerza que no pasan por el inducido, se pierden o llegan al siguiente polo. Cuanta más alta sea la corriente del inducido, más pérdidas por dispersión nos encontramos.

Generador de corriente continua: la dinamo

El generador de corriente continua, también llamado dinamo, es una máquina eléctrica rotativa a la cual le suministramos energía mecánica y la transforma en energía eléctrica en corriente continua. En la actualidad se utilizan muy poco, ya que la producción y transporte de energía eléctrica es en forma de corriente alterna.

Una de las carácterísticas de las dinamos es que son máquinas reversibles: se pueden  utilizar tanto como generador o como motor.  El motor es la principal aplicación industrial de la dinamo, ya que tiene facilidad a la hora de regular su velocidad de giro en el rotor.

Las principales partes de esta máquina son:

Estátor

El estátor es la parte fija exterior de la dinamo. El estátor contiene el sistema inductor destinado a producir el campo magnético
. Está formado por:

  • Polos inductores


    : Diseñados para repartir uniformemente el campo magnético. Distinguimos en ellos el núcleo y la expansión polar. El número de polos ha de ser par, en caso de máquinas grandes se han de utilizar polos auxiliares.

  • Devanado inductor

    : Son las bobinas de excitación de los polos principales, colocadas alrededor del núcleo. Están hechos con conductores de cobre o de aluminio recubiertos por un barniz aislante.

  • Culata

    : La culata sirve para cerrar el circuito magnético y sujetar los polos. Está construida con material ferromagnético.

Rotor

El rotor es la Parte móvil que gira dentro del estátor. El rotor al estar sometido a variación de flujo crea la fuerza electromotriz inducida, por lo tanto contiene el sistema inducido. Está formado por:

  • Núcleo del inducido


    : Cilindro construido para reducir las pérdidas magnéticas. Dispone de ranuras longitudinales donde se colocan las espiras del enrollamiento del inducido.

  • Devanado inducido

    : Formado por espiras que se distribuyen uniformemente por las ranuras del núcleo. Se conecta al circuito exterior de la máquina por medio del colector y las escobillas.

  • Colector

    : Cilindro solidario al eje de la máquina formado por segmentos de cobre o láminas aisladas eléctricamente entre ellas. En cada lámina se conecta una bobina. Es el encargado de realizar la conversión de corriente alterna a corriente continua.

  • Escobillas

    : Son piezas de carbón-grafito o metálicas, que están en contacto con el colector. Hacen la conmutación de la corriente inducida y la transportan en forma de corriente continua hacia el exterior.

  • Cojinetes

    : Sirven de soporte y permiten el giro del eje de la máquina.

Entrehierro

El entrehierro e s el espacio de aire comprendido entre el rotor y el estátor. Suele ser normalmente de entre 1 y 3 milímetros. El entrehierro es imprescindible para evitar rozamientos entre la parte fija y la parte móvil.

La conmutación en las dinamos

La conmutación es la operación de transformación de una señal alterna a una señal continua y también se conoce como rectificación de señal
. Las dinamos hacen esta conmutación porque tienen que suministrar corriente continua
.

Esta conmutación en las dinamos se realiza a través del colector de delgas.  Los anillos del  colector están cortados debido a que por fuera de la espira la corriente siempre tiene que ir en el mismo sentido. 

A la hora de realizar esta conmutación existen diferentes problemas. Cuando el generador funciona con una carga conectada en sus bornes, nos encontramos con una caída de tensión interna y una reacción en el inducido.

El inducido creará un flujo magnético que se opone al generado por el imán. A este efecto se le da el nombre de fuerza contra electromotriz, que desplazará el plano neutro.

Para solucionar este problema se pueden realizar diversas mejoras como:

  • Desplazamiento de las escobillas


    : Este método cambia las escobillas a su nueva posición corrigiendo el desvío del plano, el problema es que el motor puede trabajar desde el 0% de su carga total al 100%, por lo que el plano puede cambiar.

  • Polos de conmutación o auxiliares

    : la función de estos polos auxiliares es la de compensar el flujo producido por las bobinas inducidas y compensarlo. Es una solución muy útil y económica.

  • Bobinas de compensación

    : Cuando los generadores son de gran potencia, los polos de conmutación no son suficientes, en este caso usamos bobinas de compensación.

Ventajas del alternador respecto a la dinamo

El alternador tiene varias ventajas que hacen que sea un tipo de máquina más utilizada, ya no solo el hecho de que produce electricidad en corriente alterna, que es como se consume, si no por otras ventajas del tipo utilización.

Las ventajas del alternador respecto a la dinamo son las siguientes: 

  • En el alternador eléctrico se puede obtener mayor gama de velocidad de giro. La velocidad de giro puede ir desde 500 a 7.000 rpm. La dinamo a altas rpm sufre el colector y las escobillas elevado desgaste y subida de temperaturas.
  • El conjunto rotor y estátor en el alternador es muy compacto. 
  • Los alternadores poseen un solo elemento como regulador de tensión.
  • Los alternadores eléctricos son más ligeros: pueden llegar a ser entre un 40 y un 45% menos pesados que las dinamos, y de un 25 a un 35% más pequeños.
  • El alternador trabaja en ambos sentidos de giro sin necesidad de modificación. 
  • La vida útil del alternador es superior a la de la dinamo. Esto es debido a que el alternador eléctrico es más robusto y compacto, por la ausencia del colector en el inducido, y soporta mejor las altas temperaturas. 

Dejar un Comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *